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Introduction of subject 

• Electromagnetic Theory covers the basic 
principles of electromagnetism:  

– experimental basis, electrostatics, magnetic fields of 
steady currents, motional e.m.f. and electromagnetic 
induction, Maxwell's equations, propagation and 
radiation of electromagnetic waves, electric and 
magnetic properties of matter, and conservation laws.  

– This is a graduate level subject which uses appropriate 
mathematics but whose emphasis is on physical 
phenomena and principles. 
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Syllabus 
UNIT – I: Electrostatics in vacuum and linear dielectric medium 

Calculation of electric field and electrostatic potential for a charge 
distribution; Divergence and curl of electrostatic field; Laplace’s and Poisson’s 
equations for electrostatic potential Boundary conditions of electric field and 
electrostatic potential; energy of a charge distribution and its expression in 
terms of electric field. Electrostatic field and potential of a dipole. Bound 
charges due to electric polarization; Electric displacement; boundary 
conditions on displacement. 

 

UNIT – II: Magnetostatics 

Bio-Savart law, Divergence and curl of static magnetic field; vector potential 
and calculating It for a given magnetic field using Stokes’ theorem; the 
equation for the vector potential and its solution for given current densities. 
Magnetostatics Ina linear magnetic medium: Magnetization and associated 
bound currents; auxiliary magnetic  field; Boundary conditions on B and H. 
Solving for magnetic field due to simple magnets like a bar magnet; magnetic 
susceptibility and ferromagnetic, paramagnetic and diamagnetic materials. 
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UNIT – III: Faraday’s law and Maxwell’s equations 

Faraday’s law in terms of EMF produced by changing magnetic flux; 
equivalence of Faraday’s law and motional EMF; Lenz’s law; Electromagnetic 
breaking and its applications; Differential form of Faraday’s law; energy stored 
in a magnetic field.Continuity equation for current densities; Modified 
equation for the curl of magnetic field to satisfy continuity, equation; 
displacement current and magnetic field arising from time-dependent electric 
field; Maxwell’s equation in vacuum and non-conducting medium; Energy in 
an  electromagnetic field; Flow of energy and Poynting vector. 

 

UNIT – IV: Electromagnetic waves 

The wave equation; Plane electromagnetic waves in vacuum, their transverse 
nature and polarization; relation, between electric and magnetic fields of an 
electromagnetic wave; energy carried by electromagnetic waves and, 
examples. Momentum carried by electromagnetic waves and resultant 
pressure. Reflection and transmission of electromagnetic waves from a non-
conducting medium-vacuum interface for normal incidence. 
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Future scope 
In a vast populated country like India, the requirement of energy is never 
ending. In recent years the country has witnessed huge requirement of 
electric energy and this has created numerous opportunities such as  
• Bajaj International Private Ltd 
• Crompton Greaves Limited 
• ABB 
• Reliance Power Ltd 
• ONGS (Oil and Natural Gas Corporation) 
• PGCIL (Power Grid Corporation of India Limited) 
• CIL (Coal India Limited) 
• BHEL (Bharat Heavy Electricals Limited) 
• SAIL (Steel Authority of India Limited) 
• Siemens Ltd 
• Wipro Lighting Ltd 
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Unit 1 : Electrostatics in vacuum and linear 
dielectric medium 
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Electric Field  
• An electric field is said to exist in the region of 

space around a charged object. This charged 
object is the source charge 

• When another charged object, the test 
charge, enters this electric field, an electric 
force acts on it. 

• The electric field is defined as the electric 
force on the test charge per unit charge. 
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Electric Field: Vector Form 

• From Coulomb’s law, force between the 
source and test charges, can be expressed as  

 

 

• Then, the electric field will be  
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Electric Field – Continuous Charge 
Distribution 

• Point charge – charge with 
zero size 

• Continuous charge – 
object with charge 
distribution 
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• For the individual charge elements 

 

 

• Because the charge distribution is continuous 
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Charge distribution 

• If the charge is uniformly distributed over a 
volume, surface, or line, the amount of 
charge, dq, is given by 

– For the volume: dq = ρ dV 

– For the surface: dq = σ dA 

– For the length element: dq = λ dℓ 
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Charge Densities 

• Volume charge density: when a charge is 
distributed evenly throughout a volume 
– ρ ≡ Q / V with units C/m3 

• Surface charge density: when a charge is 
distributed evenly over a surface area 
– σ ≡ Q / A with units C/m2 

• Linear charge density: when a charge is 
distributed along a line 
– λ ≡ Q / ℓ with units C/m 

 

13 



Charge Distribution of electric 
potential 

•   Potential for a point charge 
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•   Potential of a continuous distribution 
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Divergence and Curl of  
Electrostatic Fields 

• Field of a point charge 
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1.Field lines emanate from a point charge symmetrically in all  

   directions. 

2.Field lines originate on positive charges and terminate on  

  negative ones. 

3.They cannot simply stop in midair, though they may extend  

  out to infinity. 

4.Field lines can never cross. 
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Gauss Law 

• Gauss’s Law in integral form   
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The Divergence of E 
 

• Calculate the divergence of E directly 
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Curl of E 
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Poisson’s Eq. & Laplace’s Eq. 
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Electrostatic Boundary Condition 
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The above equations are differential or integral.  

For a unique solution, we need boundary conditions. (e.q. , 

V()=0  ) 

(boundary value problem. Dynamics: initial value problem.)     



Boundary condition at surface with charge  
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• Potential Boundary condition  
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The Work Done in Moving a charge  

A test charge Q feels a force Q E

To move this test charge, we have to apply a force  

conservative 
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The Energy of a Point Charge Distribution 

It takes no work to bring in first charges  
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Work needed to bring in q4 is : 

31 2
4 4

0 14 24 34

1 [ ]
4

qq q
W q

R R R
  

for q1 



   

Total work 

W=W1+ W2+ W3 

+W4 1 3 2 3 3 41 2 1 4 2 4

0 12 13 23 14 24 34

1
4

q q q q q qq q q q q q

R R R R R R

 
      

 

 
01

1
4

n
j

i
ijj

q
V P

R



j i

0 1 1

1
4

n n
i j

iji j

q q

R
 

 

ij jiR R

01 1

1 1
2 4

n n
j

i
iji j

q
q

R
 

 
 
 
 

 
0 1 1

1
8

n n
i j

iji j

q q

R
 



 
1

1
2

n

i i
i

W q V P



 

Dose not include the first charge 

j i j i



The Energy of a Continuous Charge Distribution 
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 A Dipole in an Electric Field 

Although the net force on the dipole from the field 

is zero,  and the center of mass of the dipole does 

not move, the forces on the charged ends do 

produce a net torque  on the dipole about its 

center of mass.  

 

The center of mass lies on the line connecting the 

charged ends, at some distance x from one end and 

a distance d -x from the other end. 

The net torque is:  



 A Dipole in an Electric Field: Potential Energy 

Potential energy can be associated with the orientation 

of an electric dipole in an electric field. 

 

The dipole has its least potential energy when it is in its 

equilibrium orientation, which is when its moment p is 

lined up with the field E. 

 

The expression for the potential energy of an electric 

dipole in an external electric field is simplest if we 

choose the potential energy to be zero when the angle  

(Fig.22-19) is 90°. 
 

The potential energy U of the dipole at any other 

value of  can be found by calculating the work W done 

by the field on the dipole when the dipole is rotated to 

that value of  from 90°. 
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Electric polarization 
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The Electric Displacement 

Total charge bf  

Free charge  (at our disposal) 
f

Bound charge  (induced, comes along) 
b

Electric displacement (auxiliary field) PED  0

  enclosedff Qd ,aDD  0 D
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Future Scope and relevance to 
industry 
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